
Testing the Compiler for a New-Born Programming Language:
An Industrial Case Study (Experience Paper)

Yingquan Zhao
College of Intelligence and

Computing, Tianjin University
Tianjin, China

zhaoyingquan@tju.edu.cn

Junjie Chen∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

junjiechen@tju.edu.cn

Ruifeng Fu
College of Intelligence and

Computing, Tianjin University
Tianjin, China

frf2000@tju.edu.cn

Haojie Ye
Programming Language Lab, Huawei

Hangzhou, China
yehaojie@huawei.com

Zan Wang
College of Intelligence and

Computing, Tianjin University
Tianjin, China

wangzan@tju.edu.cn

ABSTRACT
Due to the critical role of compilers, many compiler testing tech-
niques have been proposed, two most notable categories among
which are grammar-based and metamorphic-based techniques. All
of them have been extensively studied for testing mature compilers.
However, it is typical to develop a new compiler for a new-born
programming language in practice. In this scenario, the existing
techniques are hardly applicable due to some major reasons: (1) no
reference compilers to support differential testing, (2) lack of pro-
gram analysis tools to support most of metamorphic-based compiler
testing, (3) substantial implementation effort incurred by different
programming language features. Hence, it is unknown how the
existing techniques perform in this new scenario.

In this work, we conduct the first exploration (i.e., an indus-
trial case study) to investigate the performance of the existing
techniques in this new scenario with substantial adaptations. We
adapted grammar-based compiler testing to this scenario by syn-
thesizing new test programs based on code snippets and using
compilation crash as test oracle due to the lack of reference com-
pilers for differential testing. We also adapted metamorphic-based
compiler testing to this scenario by constructing equivalent test
programs under any inputs to relieve the dependence on program
analysis tools. We call the adapted techniques SynFuzz and Meta-
Fuzz, respectively.

We evaluated both SynFuzz and MetaFuzz on two versions of a
new compiler for a new-born programming language in a global
IT company. By comparing with the testing practice adopted by
the testing team and the general fuzzer (AFL), SynFuzz can detect
more bugs during the same testing time, and both SynFuzz and

∗Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598077

MetaFuzz can complement the other two techniques. In particular,
SynFuzz and MetaFuzz have detected 11 previously unknown bugs,
all of which have been fixed by the developers. From the industrial
case study, we summarized a series of lessons and suggestions for
practical use and future research.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Compilers.

KEYWORDS
Compiler Testing, Program Synthesis, Metamorphic Testing
ACM Reference Format:
Yingquan Zhao, Junjie Chen, Ruifeng Fu, Haojie Ye, and Zan Wang. 2023.
Testing the Compiler for a New-Born Programming Language: An Industrial
Case Study (Experience Paper). In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’23), July
17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3597926.3598077

1 INTRODUCTION
Compilers are one of the most fundamental software systems since
almost all software is built on top of them. Like other software,
compilers also contain bugs [8, 9, 28, 34, 43], which could make
any software processed by the buggy compiler produce unexpected
behaviors (even disasters in safety-critical domains). That is, com-
piler bugs could produce a wider influence than the bugs in an
application. Therefore, ensuring the quality of compilers is quite
important.

In the literature, many compiler testing techniques have been
proposed to guarantee the quality of compilers [6, 7, 10, 18, 25, 32,
36, 37, 43]. According to the state-of-the-art survey of compiler test-
ing [9], these techniques can be classified into two main categories:
(1) grammar-based techniques, which construct test programs based
on the programming language grammar and determines whether a
bug is detected through comparing the results produced by several
comparable compilers (or one compiler under several optimization
levels) on the given test program or compilation crash [10, 43, 47].
(2) metamorphic-based techniques, which perform mutation on the
given test program to produce equivalent test programs (under the

551

https://doi.org/10.1145/3597926.3598077
https://doi.org/10.1145/3597926.3598077
https://doi.org/10.1145/3597926.3598077
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598077&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yingquan Zhao, Junjie Chen, Ruifeng Fu, Haojie Ye, and Zan Wang

given inputs of the test program) and then compare the results
of the compiler under test on these equivalent test programs to
detect compiler bugs [20, 29, 41]. Indeed, these techniques have
achieved great effectiveness on mature compilers (e.g., GCC [1] and
LLVM [2]) [9].

Besides mature compilers, it is also typical to develop a new com-
piler for a new-born programming language in practice. However,
it is still unknown how the existing techniques perform in this
practical scenario. Moreover, these existing techniques cannot be
directly applied to test such a new compiler due to the following
reasons: (1) For a new-born programming language, there is a lack
of reference compilers for supporting differential testing of the new
compiler, which hinders the use of the grammar-based techniques
taking differential testing as the test oracle. (2) There is a lack of
accompanying analysis tools for a new programming language (e.g.,
coverage analysis tools), which hinders the use of the metamorphic-
based techniques constructing equivalent test programs under a
given set of inputs. (3) The significantly different programming lan-
guage features (e.g., grammar) can incur substantial implementation
effort. In this work, we make the first exploration to investigate the
performance of the existing techniques (that have been evaluated
on mature compilers) on a new compiler for a new-born program-
ming language through an industrial case study. To achieve this
study, we substantially adapted the existing techniques according
to the above-mentioned characteristics of this practical scenario.

For the category of grammar-based techniques, the mainstream
methods of constructing test programs are based on grammar by
either generating test programs from scratch [21, 32, 43] or syn-
thesizing test programs by learning code snippets from existing
test programs [24, 40, 47]. For ease of presentation, we call the
former generation-based techniques and the latter synthesis-based
techniques. In this work, we just adapted the latter to the new sce-
nario, since there is an in-house testing tool following the idea
of generation-based techniques for the new compiler used in our
industrial partner, which will be also evaluated in our study (to
be presented in Section 3). Specifically, inspired by the idea of
synthesis-based compiler testing [24, 47], we designed SynFuzz,
which first extracts four kinds of code snippets from existing test
programs (such as developer-written test programs) and then con-
structs a new and valid test program by synthesizing a set of code
snippets according to the grammar of the new-born programming
language. As mentioned above, the widely-used differential-testing
mechanism cannot be used as the test oracle for testing such a
new compiler. Hence, SynFuzz determines the bug detection by
checking whether the new compiler crashes when compiling the
constructed test programs.

For the category of metamorphic-based techniques, the most
widely-studied ones are EMI-based (equivalence modulo inputs)
compiler testing, which constructs equivalent test programs under
a given set of inputs via program analysis (especially coverage anal-
ysis) [28, 29, 40]. Due to the lack of accompanying analysis tools
for a new programming language, EMI-based techniques are hardly
applicable in this new scenario. To apply the idea of metamorphic
testing to this scenario, we design MetaFuzz inspired by the ex-
isting work [18, 30], which constructs equivalent test programs
under any inputs. In this way, we can get rid of the dependence

on coverage analysis tools. Specifically, we implement six identi-
cally equivalent mutation rules in MetaFuzz according to the new
programming language features, which can construct the test pro-
grams producing the same output as the given test program under
any same inputs. If the outputs of the given test program and the
mutated programs are different, MetaFuzz detects a compiler bug.

By adapting synthesis-based and metamorphic-based compiler
testing to the practical scenario, we implemented both SynFuzz and
MetaFuzz and then applied them to test a new compiler CompX
(i.e., two relatively stable versions) for a new-born programming
language in the global IT company Huawei. Since the new com-
piler is still under development and not publicly available, we hide
the name of the compiler. The results show that SynFuzz outper-
forms MetaFuzz, the state-of-the-art testing practice adopted by the
CompX team (i.e., an in-house generation-based compiler testing
tool, called CompXFuzz), and the general fuzzer (i.e., AFL [46]). The
improvements of the former over the latter three are 66, 21, and
78 in terms of the number of detected bugs across all the exper-
iments on both versions. Moreover, both SynFuzz and MetaFuzz
can complement each other and the other two techniques. For ex-
ample, SynFuzz and MetaFuzz can detect 61 and 22 unique bugs
across all the experiments on both versions. In particular, SynFuzz
and MetaFuzz detected 11 previously unknown bugs in total, all of
which have been confirmed and fixed by developers. Finally, we
deliver a series of lessons learned from the industrial case study
and suggestions for practical use and future research. Due to the
effectiveness of SynFuzz and MetaFuzz, they have been deployed
to test CompX in Huawei.

To sum up, our work makes the following contributions:
• We identify a new but indeed practical scenario of compiler
testing, i.e., testing a new compiler of a new-born program-
ming language.

• We designed and implemented SynFuzz and MetaFuzz by
adapting synthesis-based and metamorphic-based compiler
testing proposed in the scenario of testing mature compilers
to the new scenario.

• We deployed both SynFuzz and MetaFuzz to test the new
compiler corresponding to a new-born programming lan-
guage in a global IT company Huawei, demonstrating the
effectiveness of SynFuzz and the complementary of SynFuzz
and MetaFuzz.

• We deliver a series of lessons learned from the industrial case
study and suggestions for future research and better practice
in the scenario of testing a new compiler corresponding to a
new-born programming language.

2 TECHNOLOGY
2.1 SynFuzz
Following the general idea of grammar-based compiler testing (es-
pecially synthesis-based compiler testing), there are some specific
techniques in the scenario of testing mature compilers. For exam-
ple, LangFuzz is a grammar-based technique for testing JavaScript
engines, which extracts all code snippets corresponding to each
non-terminal in the grammar and generates new test programs
through code snippet replacement [24]. JavaTailor is themost recent
synthesis-based technique, which is proposed for testing JVMs [47].

552

Testing the Compiler for a New-Born Programming Language: An Industrial Case Study (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 1: Summary of code snippet types in SynFuzz

ID Type Description

1 Sequential Snippet (SEQ) A sub-tree containing child nodes that can form a sequence of statements without any condi-
tional branches;

2 Loop Snippet (LOOP) A sub-tree of while, do-while, or for LOOP, including the loop condition node and the
corresponding body node;

3 Conditional Snippet (COND) A sub-tree of if node with its branches (i.e., else if, and else) or a switch node with all the
cases, including the conditions of all the branches/cases and the corresponding bodies;

4 Try-Catch Snippet (Try-Catch) A sub-tree of try node, including the try body and the statement nodes used for handling the
caught exception;

It extracts several pre-defined types of code snippets at the CFG
(control flow graphs) level in order to balance extraction efficiency
and effectiveness, and then synthesizes new test programs by in-
serting code snippets into seed programs. Due to the significantly
different programming language features and lack of accompanying
analysis tools for a new programming language (e.g., CFG anal-
ysis tools), these specific techniques cannot be directly applied
to the new scenario. Hence, we carefully design and implement
SynFuzz with substantial adaptations following the general idea of
synthesis-based compiler testing.

As shown in Figure 1, SynFuzz contains four main steps: code
snippet extraction (that extracts code snippets from all the given
seed programs), code snippet selection (that selects a code snippet
from all the extracted code snippets), seed program selection (that
selects a seed program from all the given seed programs), and test
program synthesis (that inserts the selected code snippet into the
selected seed program). Same as the practice of synthesis-based
compiler testing [24, 47], SynFuzz conducts random selection for
both code snippet selection and seed program selection. The major
technical challenges in SynFuzz lie in code snippet extraction and
test program synthesis, since the former should determine which
kinds of code snippets are helpful to generate effective test programs
while the latter should guarantee the validity of a synthesized
test program. To balance the testing efficiency and effectiveness,
SynFuzz also designs several types of code snippets following the
practice of JavaTailor, but extracts and synthesizes them at the
AST (Abstract Syntax Tree) level (instead of the CFG level used in
JavaTailor). This is because AST is a fundamental and common part
of syntactic analysis for most programming languages, which get
rids of the dependence on more advanced program analysis tools
(e.g., CFG analysis tools) and can also increase the generality of
SynFuzz to some degree. In the following, we introduce the two
steps in detail.

After constructing a test program, SynFuzz runs it to test the
new compiler. If the compiler crashes, it means that it detects a
compiler bug; otherwise, the test program will be put into the pool
of seed programs for supporting further synthesis.

2.1.1 Code Snippet Extraction. In SynFuzz, we systematically de-
fine four types of code snippets at the AST level, which are shown
in Table 1. Each code snippet is a sub-tree in the AST, which helps
make a trade-off between code-snippet extraction efficiency and
effectiveness. Specifically, if SynFuzz measures code snippets at
a too fine granularity (e.g, line granularity), which may increase

Seed Program Selection

Test Program
Synthesis Program

Excution

Output

No Crash Found

Snippet Pool

Snippet

Seed Program

Code Snippet
Extraction

Code Snippet
Selection

Seed
Programs

Seed
Pool

Figure 1: Overview of SynFuzz

the overhead of code snippet extraction and make the diversity of
generated test programs small. If SynFuzz measures code snippets
at a too coarse granularity (e.g., file granularity), which may lead
to a weak dependency between the code snippet and the seed pro-
gram and thus negatively affect the bug-revealing capability of the
synthesized test program.

To extract a code snippet, SynFuzz performs a depth-first search
from the root node of the AST to identify the starting node of the
sub-tree for a code snippet. The attributes in each node are used
to identify the starting node of a sub-tree as well as to determine
the type of the corresponding code snippet. For example, a node
containing an if statement can be identified as the starting node
of a sub-tree for a COND snippet (short for Conditional Snippet,
as listed in Table 1). Thanks to the tree structure that maintains all
the dependencies between nodes, SynFuzz can efficiently identify
the starting node together with all its child nodes as a COND snip-
pet. Then, SynFuzz recursively searches the sub-tree of the COND
snippet in order to further determine whether it still contains other
code snippets. In particular, the method of extracting SEQ snippets
is slightly different from the above one extracting the other three
types of code snippets. Specifically, since a SEQ snippet is a com-
bination of consecutive leaf nodes and the parents of these nodes
may have been identified as the starting nodes of the other three
types of code snippets, SynFuzz creates a virtual starting node for
these nodes to form a sub-tree and then identifies the sub-tree as a
SEQ snippet.

We further illustrate the code snippet extraction process with
an example shown in Figure 2. This is a general AST for a function
body, where the node labeled as 1 (i.e., node 1) is the root node of
the AST. For each node on the search path, SynFuzz checks whether

553

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yingquan Zhao, Junjie Chen, Ruifeng Fu, Haojie Ye, and Zan Wang

LOOP

COND

Extracted Snippets: COND: {5,6,7,8,9} SEQ: {8,9}LOOP: {2,3,4,5,6,7,8,9}

methodBody1

stmt-18

2 loop stmt

loop condition3 loop body4

if stmt5

if condition6

stmt-29

if body7

Figure 2: Snippet extraction on an AST of a function body

it contains the statements that can be used to identify the starting
node of one of the defined code-snippet types. For example, node 2
contains a loop statement, indicating that it is the starting node of
a LOOP snippet; SynFuzz then extracts this node and all its child
nodes as a LOOP snippet, corresponding to the part labeled as
LOOP in this figure. After identifying the LOOP snippet, SynFuzz
continues traversing down from the starting node of the sub-tree
of the LOOP snippet, since the loop body may contain other code
snippets (e.g., the COND snippet, labeled as COND in the figure).
When it comes to node 7, its two child nodes are both leaf nodes
and exist in a continuous manner (i.e., there are no other nodes
with branches between node 8 and node 9), and thus node 8 and
node 9, together with their virtual root node are identified as a SEQ
snippet. Finally, SynFuzz can extract 3 snippets in this example, as
shown at the bottom of Figure 2.

After completing the code snippet extraction process on the
given test programs, a code-snippet pool can be constructed by
SynFuzz, which will be used to support the synthesis of new test
programs conforming to the grammar.

2.1.2 Test Program Synthesis. Following the practice of synthesis-
based compiler testing, SynFuzz synthesizes a new test program
by randomly selecting a code snippet and a seed program. While it
is effective to ensure the diversity of synthesized test programs, it
also suffers from the problem of synthesizing invalid test programs
due to the broken syntactic/semantic constraints (e.g., missing the
definitions of the variables in the code snippet). Invalid test pro-
grams can cause them to be directly rejected at the very beginning
compilation stage, which negatively affects the overall testing ef-
fectiveness within the given testing time. This conclusion is also
confirmed by the result of AFL in our study (to be presented in
Section 3.2.1). Therefore, guaranteeing the validity of synthesized
test programs is very important.

To solve this problem, SynFuzz provides two strategies to guar-
antee syntactic and semantic correctness, respectively. The first one
is that the synthesis point (i.e., the place where the selected code
snippet is inserted) selected by SynFuzz must be valid, which helps
guarantee the syntactic correctness of synthesized test programs.
A valid synthesis point refers to a node in the AST that can accept
child nodes (e.g., the body of if statement node). Before synthesis,

 1 func main(){
 2
 3 let var1 : Bool <- "A" is Bool
 4 if (var1) {
 5 Result<Bool>.Ok(var1)
 6 } else {
 7 Result<Bool>.Err(Exception())
 8 } ?? try {
 9 func func1<T0>(param1 : Bool, param2 : Int64) : Int64 {
10 param2
11 };
12 var var2 : Int64 <- 1 #constructing new definition
13 func1<Int8>(var1, var2) #newly inserted code ingredient
14 true
15 } catch (e: Exception) { false }
16 Int64(1)
17 }

Figure 3: Bug #I4Q8OG

SynFuzz traverses the AST of the seed program to find all the valid
synthesis points for the selected code snippet and then randomly
selects one as the target synthesis point.

The second one is that the broken constraints must be fixed dur-
ing the synthesis process, which can help guarantee the semantic
correctness of synthesized test programs. There are three types of
broken constraints that need to be fixed: 1)missing types’ references,
2) missing functions’ definitions, and 3) missing variables’ definitions.
We design the corresponding methods to fix each type of broken
constraint, respectively. To complete the references of the missing
types, SynFuzz adds the test program from which the selected code
snippet is extracted as a dependent module for the seed program. To
complete the definitions of the missing functions, SynFuzz checks
whether each missing function is an internal function (that can
only be accessed in a specific scope). If so, the internal function
is also inserted into the synthesis point in the front of the code
snippet. Otherwise, SynFuzz checks whether the modifier of the
missing function is public, and changes it to public if not.

The fixing method for the missing variables’ definitions is differ-
ent since a variable (i.e., local variable) cannot be accessed outside
its scope even if we change its modifiers. Specifically, SynFuzz
first searches for the variables in the seed program that are type-
compatible with the undefined variable in the code snippet. If such
variables are found, SynFuzz randomly selects one to replace the un-
defined variable in the code snippet. Otherwise, SynFuzz constructs
a new definition for the undefined variable. The insight behind
reusing existing variables is that it can strengthen the interaction
between the code snippet and the new context provided by the seed
program, which facilitates the exploration of new compiler paths
and thus increases the probability of revealing new bugs.

We further illustrate the synthesis process with an example
shown in Figure 3. This is the pseudo-code of a test program gener-
ated by SynFuzz, which makes the new compiler crash (more details
can be found in Section 3.2.3). In this example, SynFuzz inserts a
SEQ snippet into the seed program (shown at Line 13), where the
two arguments of func1 are actually undefined (we do not show the
original variables here). Since the invoked function (i.e., func1) in
this code snippet is an internal function, and there is no definition
of func1 in the seed program, SynFuzz also inserts the correspond-
ing function definition into the seed program (shown at Lines 9-11).
Through searching, we find that there is an existing variable var1
that has the same type (i.e., Bool) as the first argument in the seed
program, and thus SynFuzz directly uses var1 to replace the first
argument. However, there is no variable type compatible with the

554

Testing the Compiler for a New-Born Programming Language: An Industrial Case Study (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 2: Summary of equivalent mutation rules in MetaFuzz

ID Type Description Example

1 Insert a new function Insert a function that returns the parameter directly
as return value (i.e. f(p) == p), and the corresponding
invocation to the newly inserted function;

let var : Int64 <- 5
=>
func f (param : Int64) : Int64 { return param }
let var : Int64 <-f(5)

2 Invert if condition Invert the condition of if statement as well as the
code body corresponding to different conditions;

let var : Int <- 5
if (var >0) { print("Y") } else { print("N") }
=>
if (var <= 0) { print("N") } else { print("Y") }

3 Insert an if statement Insert an if statement whose condition is an expres-
sion that is guaranteed to evaluate to be true/false,
and the corresponding if body is a code snippet
that will always be executed/never be executed;

print("Y")
=>
let var : Bool <- expression
if (var) { print("Y") }

4 Insert a loop statement Insert a loop statement, i.e., for, while, do-while,
and the loop count is guaranteed to evaluate to 0/1,
and the choice of loop body is the same as for if;

for (i in []) { # [] refers to an empty list
#any dead code snippets

}
5 Variable Equivalence

Conversion
Add equivalent operations to variables, e.g., ∗1 for
numeric variables, or | | false for boolean variables;

let var : Bool <- "A" is Bool
=>
let var : Bool <- "A" is Bool || false

6 Expression Equivalence
Conversion

Split a numeric expression into multiple equivalent
expressions.

let var : Int <- 5 + 1
=>
let var : Int <- 5
var <- var + 1

second argument (i.e., var2) in the seed program, and thus SynFuzz
creates a new definition for var2 with the Int64 type at Line 12.

Regarding constructing new definitions for variables, SynFuzz
constructs the corresponding types of variables with random ini-
tialization if they are primitive types. However, for reference types
(e.g., the Object type), it may be costly to construct their definitions
due to the complex inheritance dependencies, and thus SynFuzz
extracts the variable definitions with dependencies from the test
program providing the code snippet and then also inserts them into
the seed program.
2.2 MetaFuzz
MetaFuzz aims to bring the idea of metamorphic-based compiler
testing to the new scenario. That is, MetaFuzz constructs a new
test program that is equivalent to the given seed program through
mutations. Then, it uses these equivalent test programs to test the
new compiler. If their outputs under the same inputs are different, a
compiler bug is detected. Hence, it can help detect miscompilation
bugs without crashes (that cannot be detected by SynFuzz).

To get rid of the dependence on coverage analysis tools, Meta-
Fuzz does not construct equivalent test programs under a given set
of inputs like EMI-based techniques [28, 40], but constructs equiva-
lent test programs under any inputs inspired by the existing tech-
nique (i.e., GLFuzz) [18] in the scenario of testing mature compilers.
GLFuzz is an identical-equivalence-based technique, which was
proposed to test graphic shader compilers by designing a set of iden-
tically equivalent mutation rules (also called semantic-preserving
transformations). MetaFuzz substantially adapted GLFuzz to the

Seed
Programs

Seed
Pool

Program
Excution

Seed Program Behavior

Output

Behavior

No Difference Found

 Equivalent
Program
Mutation

Seed Program
Selection

Results
Analysis

Mutated Program

Figure 4: Overview of MetaFuzz

new scenario according to the characteristics of the new compiler
and the new-born programming languages. MetaFuzz removes the
identically equivalent mutation rules designed in GLFuzz specific to
graphic shader compilers, and systematically enriches the mutation
rules for the new compiler.

As shown in Figure 4, MetaFuzz contains three main steps: seed
program selection (that selects a seed program from all the given
seed programs), equivalent program mutation (that mutates the
selected seed program to generate a set of equivalent test programs
based on identically equivalent mutation rules), and program ex-
ecution for testing (that compares the execution results of these
equivalent test programs under the same inputs for testing the
new compilers). Similar to SynFuzz, MetaFuzz randomly selects
a seed program for the follow-up steps. In the following, we first
introduce the identically equivalent mutation rules implemented

555

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yingquan Zhao, Junjie Chen, Ruifeng Fu, Haojie Ye, and Zan Wang

in MetaFuzz (Section 2.2.1), and then present the testing process
based on equivalent test programs (Section 2.2.2).

2.2.1 Equivalent ProgramMutation. Inspired by existing work [18],
we systematically design and implement six identically equivalent
mutation rules in MetaFuzz, which is also the main technical chal-
lenge of MetaFuzz. Table 2 shows the details of the six mutation
rules, including a brief description and an illustrating example for
each rule. The six mutation rules involve three different granulari-
ties, i.e., function granularity (Rule 1), block granularity (Rules 2-4),
and expression granularity (Rules 5-6). All these mutation rules are
applied to the AST corresponding to the selected seed program,
which can not only alleviate the dependence on various program
analysis tools (e.g., CFG analysis tools) but also increase the gener-
ality of these mutation rules since AST is fundamental and common
for most of programming languages. In particular, Rules 1-2 are
newly enriched by MetaFuzz while Rules 3-6 are adapted from the
existing work [18].

During the mutation process, MetaFuzz randomly selects muta-
tion rules from the whole set and applies them to the selected seed
program together. Then, it generates an equivalent test program.
For each equivalent mutation rule, not all the locations in the seed
program are applicable. Hence, MetaFuzz first searches for all the
applicable locations in the seed program for each selected mutation
rule and then randomly selects a location to which the mutation
rule is applied. For example, if a selected mutation rule is to invert
an if condition (i.e., Rule 2), MetaFuzz first searches for all the
if statements in the seed program and then randomly selects an
if statement for mutation. If there is no if statement in the seed
program, MetaFuzz has to skip this mutation rule.

In particular, the application of inserting an if or loop statement
(Rules 3-4) is different, since MetaFuzz requires further selecting
the code body for the if or loop statement (besides the mutation
location). Following GLFuzz, if the condition of the if statement
is guaranteed to evaluate to false at runtime or the loop times
of the loop statement is guaranteed to evaluate to 0, it means that
the code body will never be executed. Hence, MetaFuzz randomly
selects a code snippet from the code snippet pool (built by SynFuzz
presented in Section 2.1.1) as the code body for insertion, and en-
sures the validity of the mutated test program same as the practice
of SynFuzz (presented in Section 2.1.2). If the condition of the if
statement is guaranteed to evaluate to true or the loop times of
the loop statement is guaranteed to evaluate to 1, it means that the
code body will be executed definitely. Hence, MetaFuzz randomly
selects a code snippet extracted from the selected seed program
and then inserts the if or loop statement in the front of the code
snippet by treating the code snippet as the code body. Please note
that after mutation, the variables’ definitions in the selected code
snippet are changed to a new scope, resulting in no definitions
for the subsequent variables’ use in the seed program. Hence, for
the variables’ definitions in the code snippet, MetaFuzz takes them
out of the new scope to maintain its original scope. For example,
Figure 5 shows the pseudo-code of applying Rule 3 for mutation,
where the selected if body is a SEQ snippet consisting of Lines
1-2 in Figure 5a. To ensure the validity of the mutated program,
MetaFuzz takes the definition of var1 outside of the if body, as
shown in Figure 5b.

1 var1 <- "Init" #define var1
2 println(var1)
3 if (var1 == null) { var1 <- "Init" } #access var1

(a) Source code of a selected SEQ snippet

1 var1 <- "Init" #define var1
2 var2 <- expression
3 if (var2) {
4 println(var1)
5 }
6 if (var1 == null) { var1 <- "Init" } #access var1

(b) Mutant after applying Rule 3

Figure 5: Example of applying Rule 3

According to the above mutation process, MetaFuzz can apply
several equivalent mutation rules together to construct high-order
mutated test programs. For example, Rule 3 can be combined with
Rule 5 to make the if condition more complicated. After the muta-
tion process is completed on the selected seed program, a mutated
test program equivalent to the seed program can be generated for
testing the new compiler.

2.2.2 Program Execution for Compiler Testing. Based on a pair of
equivalent test programs, MetaFuzz uses the new compiler to com-
pile them and then executes them under the same inputs (that exist
in the seed program). If they produce different outputs, it indicates
that a potential compiler bug has been detected. To reduce false pos-
itives, MetaFuzz filters out the non-deterministic outputs (such as
timestamps and random numbers) by identifying the corresponding
keywords in both test programs and the produced output messages.
Then, we manually check the remaining inconsistencies and report
the potential bugs to developers. When identifying a false positive,
we design a rule about it to help reduce this kind of false positive
during subsequent testing. If the equivalent test programs produce
the same outputs, MetaFuzz puts the mutated test program into
the seed program pool for supporting more high-order mutations,
which can also help improve the complexity of the generated test
programs and thus boost the bug-revealing capability.

3 INDUSTRIAL EVALUATION
We conducted an industrial case study to investigate whether the
compiler testing techniques (i.e., SynFuzz and MetaFuzz) adapted
from the existing compiler testing practice in the scenario of testing
mature compilers, can work well in the new scenario. Here, we
deployed the two techniques to test the new compiler for a new-
born programming language (a new multi-paradigm programming
language) developed by a global IT company Huawei. Due to the
company policy, we hide the names of the new-born programming
language and the new compiler. For ease of presentation, we call
the new compiler CompX in this paper.

CompX evolves monthly, and we used two relatively stable ver-
sions (i.e., versions 0.24.5 and 0.26.1) as the subjects in our study.
Both versions contain many known bugs, which can help obtain
the results with statistical significance. We also deployed both tech-
niques to test the trunk of CompX in order to investigate whether it
can detect previously unknown bugs, which can help complement
the results obtained from the two historical versions.

Specifically, our industrial case study aims to address the follow-
ing research questions:

556

Testing the Compiler for a New-Born Programming Language: An Industrial Case Study (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 3: Summary of seed programs and extracted snippets

Seed
Programs LOC Variables Functions Files Size Extracted snippet types

SEQ LOOP COND Try-Catch Total

Seeds-24 409,179 13,158 7,288 6,627 3,239 10,946 416 1,568 1,066 13,996
Seeds-26 428,575 12,422 7,650 6,867 3,407 11,683 434 1,156 1,709 14,982

• RQ1: How do SynFuzz and MetaFuzz perform compared
with the industrial practice in terms of the number of de-
tected bugs?

• RQ2: What is the overlap of the detected bugs by each stud-
ied technique?

• RQ3: Can SynFuzz andMetaFuzz detect previously unknown
bugs in CompX?

3.1 Experimental Design
3.1.1 Studied Techniques. Besides SynFuzz and MetaFuzz, we also
studied the current practice for testing CompX in Huawei and the
general fuzzer (i.e., American Fuzzy Loop (AFL) [46]) for sufficient
comparison in our study. The former is a generation-based com-
piler testing tool based on the grammar of the new programming
language, called CompXFuzz, which is developed by themselves in
Huawei. Similar to the idea of Csmith [43], CompXFuzz randomly
generates a test program from scratch according to the grammar
and treats the main function as the entry for generation. The latter
(AFL) is a grey-box fuzzer that has been widely used in existing
studies [22, 38]. In our scenario, AFL instruments all the branches
of CompX to collect its coverage as the guidance of the testing
process. Since the source code of CompX is confidential, we used
the qemu mode of AFL for testing CompX by treating it as a bi-
nary program1. Same as SynFuzz, if a test program generated by
CompXFuzz or AFL makes the compiler crash, it indicates that the
test program detects a compiler bug. Overall, we investigated the
performance of synthesis-based, generation-based, andmetamorphic-
based compiler testing through substantial adaptations to the new
scenario, indicating the sufficiency of our industrial case study to
some degree.

3.1.2 Seed Programs. Both SynFuzz and MetaFuzz rely on seed
programs. For sufficient comparison with CompXFuzz, we directly
used a set of test programs generated by CompXFuzz as seed pro-
grams. Please note that SynFuzz is not specific to the test programs
generated by CompXFuzz and can also take other test programs
(e.g., developer-written programs) as seeds, as mentioned before.
Specifically, we used CompXFuzz to randomly generate a set of test
programs, and then filtered out the test programs that were invalid
(due to the implementation issue of CompXFuzz) or could trigger
bugs on the compiler versions under test. Since the grammar of
the new-born programming language evolves, we cannot use the
same set of seed programs for both versions of CompX. Hence, we
collected seed programs for the two versions, respectively. In total,

1Based on the qemu mode of AFL, it is possible to obtain binary-level coverage for
each test program, which may enable EMI-based compiler testing in the new scenario.
However, EMI-based techniques perform mutations on source code, and it is challeng-
ing to map binary-level coverage to source code for a new programming language due
to incomplete toolchains.

we first generated 10,000 test programs for each version, and then
after filtering, we collected 3,239 and 3,407 test programs as the
seed programs of SynFuzz and MetaFuzz for versions 0.24.5 and
0.26.1, respectively. For ease of presentation, we call the two sets of
seed programs Seeds-24 and Seeds-26, respectively.

Table 3 presents the basic information of Seeds-24 and Seeds-26,
where Column LOC refers to the total number of lines of code for
all the seed programs, Columns Variables, Functions, and Files refer
to the total number of variables, functions, files in seed programs,
and Column Size refers to the number of collected seed programs.
Columns SEQ, LOOP, COND, and Try-Catch represent the total
number of each type of code snippets extracted from the seed
programs.

3.1.3 Metrics. We adopted the number of detected bugs to mea-
sure the effectiveness of each studied compiler testing technique.
For fair comparison, we ran each studied technique for 3 days on
each compiler version. To reduce the influence of randomness, each
experiment was repeated 5 times independently with different ran-
dom seeds. SynFuzz, CompXFuzz, and AFL detect bugs by checking
whether the compiler crashes when compiling a test program. Fol-
lowing the existing work [47] and the suggestion from the CompX
testing team, we used crash messages to determine the number
of bugs from a set of bug-triggering test programs. Besides crash
bugs, MetaFuzz also detects miscompilation bugs by comparing the
outputs of a pair of equivalent test programs. Regarding such out-
put inconsistencies, it is hard to automatically de-duplicate them,
and thus the CompX testing team assists us in investigating them
manually and determining the number of bugs from a set of test
programs triggering output inconsistencies.

Regarding the bugs detected on the trunk of CompX, which tend
to be previously unknown bugs, we reported them to the CompX
testing team and determined the number of detected bugs according
to their feedback.

3.1.4 Implementation and Environment. We implemented SynFuzz
and MetaFuzz on the AST parser provided by Huawei. To balance
the effectiveness and efficiency of test program generation, SynFuzz
inserts five code snippets into a given seed program for generating
a new test program, while MetaFuzz mutates the given seed pro-
gram 20 times based on our designed equivalent mutation rules for
generating one equivalent mutated program. All the experiments
were conducted on a server with two dodeca-core CPUs Intel(R)
Xeon(R) Silver 4214 CPU @ 2.20GHz and 251GB RAM, running
Ubuntu 18.04.4 LTS (64-bit). Due to the company policy, we cannot
release our experimental data and the implementations of SynFuzz
and MetaFuzz before completing the confidential checking process
in Huawei.

557

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yingquan Zhao, Junjie Chen, Ruifeng Fu, Haojie Ye, and Zan Wang

(a) CompX 0.24.5 (b) CompX 0.26.1

Figure 6: Comparison of the number of bugs detected over time

3.2 Results and Analysis
3.2.1 RQ1: Number of Detected Bugs. Figure 6 shows the compar-
ison results among SynFuzz, MetaFuzz, CompXFuzz, and AFL in
terms of the number of detected bugs, where the x-axis represents
the testing time, and the y-axis represents the number of detected
bugs. For each technique, the solid line presents the average result
of five repeated experiments, while the shading area shows the
overall results between maximum and minimum across the five re-
peated experiments. From Figure 6, SynFuzz almost always detects
more bugs than the other three studied techniques on each compiler
version. Specifically, in terms of the total number of bugs across
the five repeated experiments on both versions after de-duplication,
SynFuzz detects 93 bugs while MetaFuzz, CompXFuzz, and AFL de-
tect 27, 72, and 15 bugs, respectively. The improvements of SynFuzz
over CompXFuzz and AFL are 29.17% and 520.00%, respectively.
Regarding MetaFuzz, it performs worse than CompXFuzz and Syn-
Fuzz in terms of the total number of detected bugs on both versions,
but still achieves an 80.00% improvement over AFL. In particular,
we performed the Mann-Whitney U-test [3] at the significance level
of 0.05 for each pair of techniques to check whether there is a signif-
icant difference between them in statistics in terms of the number
of detected bugs. We found that all the p-vales are smaller than
0.01, demonstrating the statistical significance of our conclusions.

We then analyzed the reason why SynFuzz outperforms the
current practice for testing CompX in Huawei (i.e., CompXFuzz).
CompXFuzz constructs test programs from scratch based on the
grammar of the new-born programming language, which requires
constructing a large number of program elements and maintaining
complex dependencies between elements. However, SynFuzz inserts
some code snippets into a given seed program, and thus just needs
to consider the code snippets and their affected code in the seed
program to ensure the validity of the generated test program. By
comparing the test program generation process of SynFuzz and
CompXFuzz, we can find that the generation efficiency of SynFuzz
is higher than that of CompXFuzz. That is, during the same testing
time, SynFuzz generates much more test programs for compiler
testing than CompXFuzz. For example, on version 0.26.1, SynFuzz
generates and runs 59,932 test programs on average across the five
repeated experiments, while CompXFuzz just generates and runs
40,699 test programs for testing on average. In fact, SynFuzz takes

the test programs generated by CompXFuzz as the seed programs
in our study for sufficient comparison with CompXFuzz, and thus
SynFuzz and CompXFuzz have almost the same input space. Due to
the high efficiency of SynFuzz, it can explore the input space faster,
leading to better bug detection effectiveness during the same testing
time. This conclusion is also confirmed by the existing study [8],
which shows that efficiency is the most important factor that affects
the effectiveness of a compiler testing technique.

We further analyzed whyMetaFuzz was unable to detect as many
bugs as SynFuzz and CompXFuzz did, which also mainly lies in the
relatively low efficiency of MetaFuzz. MetaFuzz tests the CompX by
mutating a given seed program to an equivalent test program and
then running the pair of equivalent test programs. Compared with
both SynFuzz and CompXFuzz, MetaFuzz needs to compile and
execute a pair of test programs (rather than only one test program)
each time. It incurs more costs than SynFuzz and CompXFuzz, lead-
ing to generating and running fewer test programs during the same
testing time. For example, on version 0.26.1, MetaFuzz just gener-
ates 27,955 test programs on average across the five repeated runs.
Furthermore, as demonstrated by the existing studies [9, 20, 29, 41],
such metamorphic-based compiler testing is good at detecting bugs
in compiler optimizations. However, the current core functionality
of CompX, as a new compiler for a new-born programming lan-
guage, still lies in the non-optimization part. The current CompX
just implements some simple optimizations, which also limits the
effectiveness of MetaFuzz. This is also the reason why SynFuzz does
not adopt Different Optimization Levels (DOL, a kind of differential
testing that compares the results produced by one compiler under
different optimization levels on a given test program) as the test or-
acle. More specifically, DOL is limited by such simple optimizations
in effectiveness but incurs much overhead on testing for each test
program. With the functionality of optimizations improving, we
can incorporate DOL for effectiveness improvement in the future.

We also analyzed why AFL always detected the fewest bugs
among all the studied techniques on both versions. The reasons
are twofold. The first one also lies in the relatively low efficiency.
AFL collects test coverage of the CompX by instrumenting the
corresponding binary program (as presented in Section 3.1.1), which
incurs extra overhead during the testing process. For example, on
version 0.26.1, AFL only generates and runs 8,159 test programs

558

Testing the Compiler for a New-Born Programming Language: An Industrial Case Study (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

CompXFuzz AFL

1

9

36 15

25

0

0

017
2 0

0 0

SynFuzz MetaFuzz

(a) CompX 0.24.5

CompXFuzz AFL

0

6

25 7

16

0

0

010
2 0

0 0

SynFuzz MetaFuzz

(b) CompX 0.26.1

Figure 7: Bug overlap analysis

on average across the five repeated runs. The second reason is
that most of the test programs generated by AFL are syntactically
invalid. Specifically, the mutation rules in AFL do not conform
to the language specifications and can damage the structure of
the seed program, causing that most of the generated programs
are invalid. It can negatively affect testing efficiency. For example,
among the test programs generated by AFL on version 0.26.1, only
812 test programs were free of syntax errors on average, indicating
that 90.04% of the test programs generated by AFL are syntactically
invalid. This also demonstrates the importance of designing the
fixing strategy in SynFuzz to ensure the validity of generated test
programs.

3.2.2 RQ2: Bug Overlap Analysis. We further analyzed the overlap
of bugs detected by the four studied techniques. Here, for each
technique, we put all the detected bugs across the five repeated
runs together and then de-duplicated them based on the method
mentioned in Section 3.1.3 for bug overlap analysis. The Venn
diagrams in Figure 7 show the bug overlap analysis results on each
compiler version. From Figure 7, each studied technique can detect
some unique bugs, which refer to the bugs that are detected by the
technique but are not detected by the other three techniques. In
total, on the two versions, SynFuzz, MetaFuzz, CompXFuzz, and
AFL detect 61, 22, 41, and 15 unique bugs in total, respectively. That
is, SynFuzz and MetaFuzz are complementary with CompXFuzz and
AFL to a large extent for testing CompX.

We further explained why SynFuzz and MetaFuzz can comple-
ment the current practice (i.e., CompXFuzz) for testing CompX.
As presented above, the high efficiency of SynFuzz makes a ma-
jor contribution to its largest number of unique bugs. Through
deeper analysis, we found that many of the unique bugs detected
by SynFuzz were triggered by complex code structures. For exam-
ple, SynFuzz inserts an internal function and its invocation into a
hard-to-reach code area as shown in Figure 3 (i.e., a combination
of if and try-catch statement). However, generating such code
structures is very inefficient for CompXFuzz, since it generates test
programs within the huge (even infinite) search space, but Syn-
Fuzz just explores the space defined by the prepared seed programs
through code snippet synthesis. Actually, the larger search space of
CompXFuzz than SynFuzz contributes to the unique bugs detected
by CompXFuzz to some degree.

For MetaFuzz, its test oracle based on a pair of equivalent test
programs makes the contribution to the unique bugs detected by
it. Specifically, all the other three techniques can only detect crash

bugs, while MetaFuzz can detect both crash bugs and miscompila-
tion bugs. The reason why MetaFuzz can detect crash bugs lies in
that it requires compiling equivalent test programs before checking
equivalence during runtime. Although we guarantee all the seed
programs can be compiled and executed successfully, the mutated
test programs may trigger compilation crashes. The overlapped
bugs between SynFuzz, CompXFuzz, and MetaFuzz are exactly
crash bugs. Moreover, through further investigation, we found that
our designed mutation rules indeed help construct complex code
structures in mutated test programs, which is also helpful to im-
prove the bug-triggering capabilities of generated test programs.

In particular, the bugs detected by AFL were not detected by any
of the other three techniques. The reason lies in the mutation rules
in AFL. They mutate the given seed program by bytes and often
produce uncertain characters, causing that all the bugs detected by
AFL are triggered by illegal characters. However, the other three
techniques cannot introduce illegal characters in the generated test
programs, and thus they cannot detect these bugs.

3.2.3 RQ3: Previously Unknown Bugs. In this experiment, we kept
almost the same experimental settings as the other experiments,
but collected the seed programs on the trunk of CompX due to the
grammar update and ran each technique for a longer testing time
(i.e., ten days). Since the CompX testing team also uses CompXFuzz
to test the trunk of CompX, we just reported the unique bugs de-
tected by SynFuzz or MetaFuzz to the CompX testing team after
our careful analysis. In total, we submitted 11 bugs, 11 of which
have been confirmed and fixed by the developers. In particular, five
of these bugs were marked as critical defects. Here, we use two
previously unknown bugs as examples for further illustration.

Figure 3 shows the pseudo-code of a test program generated by
SynFuzz, which makes CompX crash. The synthesis process of this
test program has been described in Section 2.1.2, and we further ex-
plain how it triggers the compiler bug. In this example, the coalesc-
ing operator ?? at Line 8 joins an if expression with a try-catch
expression to form a coalescing expression. In particular, the result
of coalescing expression depends on the return type of the if ex-
pression (each expression in the new language has a return type). If
the return type of if expression is Result<Bool>.Ok(var1) (Line
5), the result of coalescing expression is the same as the result of if
expression (i.e., var1); Otherwise, the result of coalescing expres-
sion is the same as the execution results of try-catch expression.
In the body of the try-catch expression, an internal function (i.e.,
func1) is inserted at Lines 9-11 and called at Line 13. This test
program is syntactically correct and should be compiled normally,
however, CompX failed to generate the internal function in the
try body after the coalescing operator ?? due to a code generation
bug, and crashed during compilation. Please note that neither the
seed program nor the test program from which the code snippet
is extracted can detect this bug. We put the foreign code snippet
into a new context and make them interact, which helps to trigger
a new program execution path and thus makes CompX crash.

Figure 8 shows the pseudo-code of a test program generated
by MetaFuzz, which makes CompX throw a code generation error
during compilation. In this example, MetaFuzz applies twomutation
rules on function func1. MetaFuzz first applies the Insert an if
statement rule (i.e., Rule 3) at Line 6, and the if condition was

559

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yingquan Zhao, Junjie Chen, Ruifeng Fu, Haojie Ye, and Zan Wang

 1 func func1(){
 2
 3 loopCount <- (1) #insert a loop once statement
 4 for (i in loopCount) {
 5 let var1 : Bool <- false expression
 6 if (var1) { #insert an if statement
 7 (match (i) {
 8 case _ =>
 9 let var2 : Result<Unit> = Result<Unit>.Ok(());
10 var2
11 } ?? func2())
12 }
13 }
14
15 }

Figure 8: Bug #I4YN50

evaluated to false. Since the if code body will not be executed,
MetaFuzz randomly selects a code snippet from the snippet pool
and inserts it at Line 7. The selected code snippet in this example is a
SEQ code snippet (i.e., Lines 7-11), which is a coalescing expression
consisting of a match expression and a function call (i.e., func2, the
deceleration of func2 is omitted due to the limited space). Then
MetaFuzz applies the Insert a loop statement rule (i.e., Rule 4) on
func1 at Line 4, and selects the inserted if statement as the loop
body, where the loop count was evaluated to 1 (indicating that the
loop body will always be executed). This example is syntactically
correct and should be compiled normally, however, CompX failed
to compile this example and threw a code generation error. This
bug cannot be detected by the other three techniques.

4 DISCUSSION
4.1 Lessons Learned
Validity of test programs matters. As shown in RQ1 and RQ2,
AFL detects the fewest compiler bugs compared with the other
three techniques. One major reason lies in that most of the test
programs generated by AFL are syntactically invalid. This points
out the importance of the validity of generated test programs. That
is, for structural test inputs, it is very critical to guarantee the
generated inputs conform to the corresponding specification (e.g.,
the programming-language syntactic constraints for test programs).
Indeed, the invalid test programs generated by AFL also help detect
some unique bugs. By considering the overall testing effectiveness,
we could consider constructing invalid test programs for testing as
complementary after sufficient testing with valid test programs in
the future.

Cost of test program generation matters. SynFuzz is more effi-
cient in generating test programs than the other three techniques,
and thus detects more bugs than them during the same testing time.
This points out that efficiency is an indispensable factor in achiev-
ing better compiler-testing effectiveness. This also demonstrates
the contribution of SynFuzz by adapting synthesis-based compiler
testing to the new scenario.

Diversity of testing techniques matters. From RQ2, all the stud-
ied compiler testing techniques can detect a number of unique bugs,
indicating that they are complementary in detecting compiler bugs.
This shows that it is useful to integrate these techniques to achieve
better testing effectiveness in practice. This also demonstrates the
contribution of adapting synthesis-based, generation-based, and

metamorphic-based techniques to the new scenario, rather than
just considering one kind of testing technique.
4.2 Suggestions
Suggestions for practical use. Based on our industrial evaluation,
these studied techniques can complement each other, and thus
it is important to use all of them in practice. By considering their
testing efficiency and effectiveness (especially the unique value), we
suggest to apply these compiler testing techniques to the compiler
under test as the priority of SynFuzz, CompXFuzz, MetaFuzz, and
AFL according to the given testing time.

Although SynFuzz and MetaFuzz target the CompX compiler,
the ideas of them are general and can be generalized to other similar
programming languages, since the programming language features
involved in SynFuzz (i.e., the designed code-snippet types) andMeta-
Fuzz (i.e., the equivalent mutation rules) have similar substitutes
in many programming languages. Regarding the unique program-
ming language features, they can be extended by implementing
corresponding code-snippet extraction and synthesis strategies as
well as mutation rules following the high-level ideas adopted in
SynFuzz and MetaFuzz. In particular, our industrial evaluation has
demonstrated the effectiveness of them. Therefore, when new com-
pilers for other new-born programming languages are developed,
they can also be adapted to test them, especially at the initial stage,
since they do not have various dependence on advanced program
analysis tools (e.g, coverage analysis tools and CFG analysis tools)
and reference compilers. Indeed, both SynFuzz and MetaFuzz have
been deployed in Huawei to test CompX in practice due to these
advantages of them.
Suggestions for future research. First, although we made the
first exploration to adapt advanced compiler testing practices in
the scenario of testing mature compilers (i.e., synthesis-based and
metamorphic-based compiler testing) to fit the new scenario, there
is still room to further improve the effectiveness of them. In partic-
ular, both SynFuzz and MetaFuzz involve random selection, such as
random code-snippet selection, random seed program selection, and
randommutation rule selection. For the enormous search space, the
random search method could be inefficient, and meanwhile some
existing work has demonstrated the effectiveness of more advanced
search methods in the area of software testing [11, 16, 17, 44, 48].
Therefore, it is promising to further improve both SynFuzz and
MetaFuzz by integrating more advanced search algorithms (such
as reinforcement learning [26] or genetic algorithm [14, 45]).

Besides, both SynFuzz and MetaFuzz are complementary, and
thus it could be promising to integrate them into one more effective
technique. A simple way is to take the test programs generated
by SynFuzz as the seed programs of MetaFuzz. Better integration
methods (even with CompXFuzz due to the complementarity) can
be explored in the future.

4.3 Threats to Validity
The internal threat to validity mainly lies in the implementations
of SynFuzz and MetaFuzz. To reduce this threat, three authors
carefully checked all the code.

The external threat to validity mainly lies in the subjects used in
our study. Here, we just evaluated SynFuzz and MetaFuzz on two
versions of CompX in one company (i.e., Huawei). Actually, putting

560

Testing the Compiler for a New-Born Programming Language: An Industrial Case Study (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

one technique to practice on one product of a company has been
very challenging, since it has a very high requirement for effective-
ness. Our industrial case study demonstrated the effectiveness and
practicability of our adapted techniques. In the future, we will try
to extend them to more compilers in other companies.

The construct threat to validity mainly lies in the randomness in-
volved in these techniques. To reduce the influence of randomness,
we conducted the study on two versions by repeating each exper-
iment five times independently with different random seeds and
performed a Mann-Whitney U-test to confirm the statistical signifi-
cance of our conclusions, as suggested by the existing work [27].

5 RELATEDWORK
The goal of our work is to conduct an industrial case study to inves-
tigate the effectiveness of the existing compiler testing techniques
in the new scenario. Here, we substantially adapted grammar-based
compiler testing and metamorphic-based compiler testing in the
scenario of testing mature compilers to fit the new scenario. There-
fore, our related work consists of two parts: the existing compiler
testing techniques and the existing compiler testing studies.
Compiler Testing Techniques. In our work, we designed and im-
plemented SynFuzz and MetaFuzz inspired by grammar-based com-
piler testing (especially synthesis-based compiler testing) [24, 47]
and metamorphic-based compiler testing [18, 20]. We have intro-
duced the representative grammar-based techniques (i.e., Lang-
Fuzz [24] and JavaTailor [47]) in Section 2.1 and the representative
metamorphic-based technique with identically equivalent mutation
(i.e., GLFuzz [18]) in Section 2.2. Besides, there are some other com-
piler testing techniques [4, 5, 15, 23, 31, 33, 35, 39]. For example,
Yang et al. [43] proposed Csmith, which is a generation-based tech-
nique that randomly constructs C programs from scratch by consid-
ering a number of C features. Chen et al. [10] proposed HiCOND,
which boosts generation-based techniques bymining historical data
to guide the configurations of test program generation tools. In
particular, our industrial case study also investigated the effective-
ness of generation-based compiler testing by studying CompXFuzz,
which is developed by the CompX testing team following the idea
of generation-based compiler testing. EMI-based compiler testing is
also widely studied in the literature [12, 13, 41, 42], which belongs
to the category of metamorphic-based techniques [9]. Different
from GLFuzz and MetaFuzz, EMI-based compiler testing aims to
construct equivalent test programs under a given set of inputs of the
seed program. Based on the idea of EMI, there are several instantia-
tions, such as Orion [28], Athena [29], and Hermes [40]. However,
EMI-based techniques heavily depend on program analysis tools
(especially coverage analysis tools), which limits the application of
them in the new scenario as explained before.

Our work does not aim to propose novel compiler testing tech-
niques, but adapts the existing ones to the new scenario for empir-
ical investigation, and then obtains insightful findings for future
research and practical use. And an implicit goal for our work is to
borrow the power from existing researches to test the new compiler
well. Hence, in the future, we can improve SynFuzz and MetaFuzz
by referring to more advanced strategies in the literature.
Compiler Testing Studies. In the literature, there are some em-
pirical studies on compiler testing. For example, Chen et al. [8]

empirically compared three compiler testing techniques, i.e., RDT
(randomized differential testing), DOL, and EMI, on twomainstream
open-source C compilers (i.e., GCC and LLVM), and delivered a
series of findings. Lidbury et al. [30] investigated the effectiveness
of RDT and EMI on OpenCL compilers. They lifted RDT by building
a tool CLsmith on the basis of Csmith [30] and lifted EMI by inject-
ing dead-by-construction code. Actually, MetaFuzz also includes
injecting dead-by-construction code as one of the mutation rules
inspired by it and GLFuzz. Donaldson et al. [19] summarized the
experience of applying randomized metamorphic compiler testing
to the testing of graphic shader compilers in production. They en-
hanced the quality of Vulkan Conformance Test Suite with the test
programs generated by GraphicFuzz (originally called GLFuzz) that
expose bugs or provide additional coverage, and also discussed the
practical experience and new directions for future research.

Different from them, we conducted an industrial case study to
investigate the effectiveness of grammar-based and metamorphic-
based compiler testing in the scenario of testing new compilers
of new-born programming languages. According to the charac-
teristics of the new scenario, we implemented SynFuzz and Meta-
Fuzz through substantial adaptations inspired by grammar-based
and metamorphic-based compiler testing. Further, we summarized
lessons and suggestions from the industrial study for promoting
future research and practical guidelines in the new scenario.

6 CONCLUSION
In this work, we made the first exploration to test a new compiler
for a new-born programming language. Specifically, we substan-
tially adapted the notable grammar-based and metamorphic-based
compiler testing in the scenario of testing mature compilers to the
new scenario. Inspired by grammar-based compiler testing (espe-
cially synthesis-based compiler testing), we design SynFuzz, which
generates a new test program by synthesizing a set of code snippets
extracted from existing test programs with the assistance of the
grammar and adopts compilation crash as test oracle due to lack of
reference compiler for differential testing. Inspired bymetamorphic-
based compiler testing, we design MetaFuzz, which generates a new
equivalent test program by performing identically equivalent muta-
tions and thus gets rid of the dependence on coverage analysis tools.
We conducted an industrial case study to evaluate both SynFuzz
and MetaFuzz on two versions of CompX in Huawei by compar-
ing with the practice adopted by the CompX testing team (that
is inspired by generation-based compiler testing) and AFL. The
results demonstrate the effectiveness of SynFuzz and the comple-
mentary of SynFuzz and MetaFuzz. They have also detected 11
previously unknown bugs in total, all of which have been fixed by
developers. Due to their effectiveness, they have been deployed to
testing CompX in Huawei. In particular, we delivered a series of
lessons and suggestions for practical use and future research from
the industrial case study.

ACKNOWLEDGMENT
This work was partially funded by the National Natural Science
Foundation of China 62002256, 62232001, and 61872263.

561

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yingquan Zhao, Junjie Chen, Ruifeng Fu, Haojie Ye, and Zan Wang

REFERENCES
[1] 2023. GCC. http://gcc.gnu.org/.
[2] 2023. LLVM. https://llvm.org/.
[3] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical

Tests to Assess Randomized Algorithms in Software Engineering. In Proceedings
of the 33rd International Conference on Software Engineering (Waikiki, Honolulu,
HI, USA) (ICSE’11). Association for Computing Machinery, New York, NY, USA,
1–10.

[4] Rohan Bavishi, Caroline Lemieux, Koushik Sen, and Ion Stoica. 2021. Gauss:
program synthesis by reasoning over graphs. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–29.

[5] Abdulazeez S. Boujarwah and Kassem Saleh. 1997. Compiler test case generation
methods: a survey and assessment. Inf. Softw. Technol. 39, 9 (1997), 617–625.

[6] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.
2017. Learning to prioritize test programs for compiler testing. In Proceedings of
the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017, Sebastián Uchitel, Alessandro Orso, and Martin P.
Robillard (Eds.). IEEE / ACM, 700–711.

[7] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler bug isolation via effective witness test program generation. In
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas,
Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM, 223–234.

[8] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proceedings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie A.
Williams (Eds.). ACM, 180–190.

[9] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. ACM Comput. Surv. 53,
1 (2020), 4:1–4:36.

[10] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Lu
Zhang. 2019. History-Guided Configuration Diversification for Compiler Test-
Program Generation. In 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE,
305–316.

[11] Junjie Chen, Ningxin Xu, Peiqi Chen, andHongyu Zhang. 2021. Efficient Compiler
Autotuning via Bayesian Optimization. In 43rd IEEE/ACM International Conference
on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 1198–
1209.

[12] Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. 2020. Metamorphic Testing:
A New Approach for Generating Next Test Cases. CoRR abs/2002.12543 (2020).

[13] Tsong Yueh Chen, T. H. Tse, and Zhiquan Zhou. 2003. Fault-based testing without
the need of oracles. Inf. Softw. Technol. 45, 1 (2003), 1–9.

[14] Xiang Chen, Yingquan Zhao, Qiuping Wang, and Zhidan Yuan. 2018. MULTI:
Multi-objective effort-aware just-in-time software defect prediction. Inf. Softw.
Technol. 93 (2018), 1–13.

[15] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Z. Fern,
Eric Eide, and John Regehr. 2013. Taming compiler fuzzers. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seat-
tle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.).
ACM, 197–208.

[16] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep differential testing of JVM
implementations. In Proceedings of the 41st International Conference on Software
Engineering. 1257–1268.

[17] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Type-
checker Using CLP (T). In 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, Myra B.
Cohen, Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 482–
493.

[18] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated testing of graphics shader compilers. Proc. ACM Program. Lang. 1,
OOPSLA (2017), 93:1–93:29.

[19] Alastair F. Donaldson, Hugues Evrard, and Paul Thomson. 2020. Putting Ran-
domized Compiler Testing into Production (Experience Report). In 34th European
Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and To-
bias Pape (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:29.

[20] Alastair F. Donaldson and Andrei Lascu. 2016. Metamorphic testing for (graphics)
compilers. In Proceedings of the 1st InternationalWorkshop onMetamorphic Testing,
MET@ICSE 2016, Austin, Texas, USA, May 16, 2016. ACM, 44–47.

[21] Eric Eide and John Regehr. 2008. Volatiles are miscompiled, and what to do about
it. In Proceedings of the 8th ACM & IEEE International conference on Embedded
software, EMSOFT 2008, Atlanta, GA, USA, October 19-24, 2008, Luca de Alfaro
and Jens Palsberg (Eds.). ACM, 255–264.

[22] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++
: Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop
on Offensive Technologies, WOOT 2020, August 11, 2020, Yuval Yarom and Sarah
Zennou (Eds.). USENIX Association.

[23] Alex Groce, Gerard J. Holzmann, and Rajeev Joshi. 2007. Randomized Differential
Testing as a Prelude to Formal Verification. In 29th International Conference on
Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007. IEEE
Computer Society, 621–631.

[24] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proceedings of the 21th USENIX Security Symposium, Bellevue, WA,
USA, August 8-10, 2012, Tadayoshi Kohno (Ed.). USENIX Association, 445–458.

[25] Ishtiaque Hussain, Christoph Csallner, Mark Grechanik, Qing Xie, Sangmin Park,
Kunal Taneja, and B. M. Mainul Hossain. 2016. RUGRAT: Evaluating program
analysis and testing tools and compilers with large generated random benchmark
applications. Softw. Pract. Exp. 46, 3 (2016), 405–431.

[26] Junhwi Kim, Minhyuk Kwon, and Shin Yoo. 2018. Generating test input with
deep reinforcement learning. In Proceedings of the 11th International Workshop on
Search-Based Software Testing, ICSE 2018, Gothenburg, Sweden, May 28-29, 2018,
Juan Pablo Galeotti and Alessandra Gorla (Eds.). ACM, 51–58.

[27] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. CoRR abs/1808.09700 (2018).

[28] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 216–226.

[29] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. 386–399.

[30] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-core compiler fuzzing. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 65–76.

[31] William M. McKeeman. 1998. Differential Testing for Software. Digit. Tech. J. 10,
1 (1998), 100–107.

[32] Eriko Nagai, Hironobu Awazu, Nagisa Ishiura, and Naoya Takeda. 2012. Random
testing of C compilers targeting arithmetic optimization. InWorkshop on Synthesis
And System Integration of Mixed Information Technologies (SASIMI 2012). 48–53.

[33] Georg Ofenbeck, Tiark Rompf, and Markus Püschel. 2016. RandIR: differential
testing for embedded compilers. In Proceedings of the 7th ACM SIGPLAN Sym-
posium on Scala, SCALA@SPLASH 2016, Amsterdam, Netherlands, October 30 -
November 4, 2016, Aggelos Biboudis, Manohar Jonnalagedda, Sandro Stucki, and
Vlad Ureche (Eds.). ACM, 21–30.

[34] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, Beijing, China -
June 11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 335–346.

[35] Masataka Sassa and Daijiro Sudosa. 2006. Experience in Testing Compiler Opti-
mizers Using Comparison Checking. In Proceedings of the International Conference
on Software Engineering Research and Practice & Conference on Programming Lan-
guages and Compilers, SERP 2006, Las Vegas, Nevada, USA, June 26-29, 2006, Volume
2, Hamid R. Arabnia and Hassan Reza (Eds.). CSREA Press, 837–843.

[36] Sabrina Souto and Marcelo d’Amorim. 2018. Time-space efficient regression
testing for configurable systems. J. Syst. Softw. 137 (2018), 733–746.

[37] Sabrina Souto, Marcelo d’Amorim, and Rohit Gheyi. 2017. Balancing soundness
and efficiency for practical testing of configurable systems. In Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017, Sebastián Uchitel, Alessandro Orso, and Martin P.
Robillard (Eds.). IEEE / ACM, 632–642.

[38] Prashast Srivastava and Mathias Payer. 2021. Gramatron: effective grammar-
aware fuzzing. In ISSTA ’21: 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Virtual Event, Denmark, July 11-17, 2021, Cristian
Cadar and Xiangyu Zhang (Eds.). ACM, 244–256.

[39] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and analyzing compiler
warning defects. In Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, Laura K. Dillon, Willem
Visser, and Laurie A. Williams (Eds.). ACM, 203–213.

[40] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live
code mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. 849–863.

[41] Qiuming Tao, Wei Wu, Chen Zhao, andWuwei Shen. 2010. An Automatic Testing
Approach for Compiler Based on Metamorphic Testing Technique. In 17th Asia
Pacific Software Engineering Conference, APSEC 2010, Sydney, Australia, November
30 - December 3, 2010, Jun Han and Tran Dan Thu (Eds.). IEEE Computer Society,
270–279.

[42] Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2022.
Metamorphic Testing of Deep Learning Compilers. Proc. ACMMeas. Anal. Comput.
Syst. 6, 1 (2022), 15:1–15:28.

[43] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation. 283–294.

[44] Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xi-
aoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated

562

http://gcc.gnu.org/
https://llvm.org/

Testing the Compiler for a New-Born Programming Language: An Industrial Case Study (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

conformance testing for JavaScript engines via deep compiler fuzzing. In PLDI ’21:
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund
and Eran Yahav (Eds.). ACM, 435–450.

[45] Tingting Yu, Witawas Srisa-an, Myra B. Cohen, and Gregg Rothermel. 2018. A
hybrid approach to testing for nonfunctional faults in embedded systems using
genetic algorithms. Softw. Test. Verification Reliab. 28, 7 (2018).

[46] Michal Zalewski. 2023. american fuzzy lop (2.52 b). Retrieved April 10 (2023).

[47] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun
Zhang, and Lingming Zhang. 2022. History-Driven Test Program Synthesis
for JVM Testing. In 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 1133–1144.

[48] Yingquan Zhao, Zan Wang, Shuang Liu, Jun Sun, Junjie Chen, and Xiang Chen.
2023. Achieving High MAP-Coverage Through Pattern Constraint Reduction.
IEEE Trans. Software Eng. 49, 1 (2023), 99–112.

563

	Abstract
	1 Introduction
	2 Technology
	2.1 SynFuzz
	2.2 MetaFuzz

	3 Industrial Evaluation
	3.1 Experimental Design
	3.2 Results and Analysis

	4 Discussion
	4.1 Lessons Learned
	4.2 Suggestions
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

